Diffuse auroras look a bit like pea soup. They spread across the sky in a dim green haze, sometimes rippling as if stirred by a spoon. They’re not as flamboyant as auroras caused by solar storms. Nevertheless, they are important because they represent a whopping 75% of the energy input into Earth’s upper atmosphere at night. Researchers have been struggling to understand them for decades.
photographed by Emmanuel V. Masongsong in Fairbanks, AK
It is Earth itself.
Earth performs this trick using electron beams. High above our planet’s poles, beams of negatively-charged particles shoot upward into space, accelerated by electric fields in Earth’s magnetosphere. Sounding rockets and satellites discovered the beams decades ago. It turns out, they can power the diffuse auroras.
The video below shows how it works. The beams travel in great arcs through the space near Earth. As they go, they excite ripples in the magnetosphere called Electron Cyclotron Harmonic (ECH) waves. Turn up the volume and listen to the waves recorded by THEMIS-ARTEMIS:
“This is exciting,” says UCLA professor Vassilis Angelopoulos, a co-author of the papers and lead of the THEMIS-ARTEMIS mission. “We have found a totally new way that particle energy can be transferred from Earth’s own atmosphere out to the magnetosphere and back again, creating a giant feedback loop in space.”
According to Angelopoulos, Earth’s polar electron beams1 sometimes weaken but they never completely go away2, not even during periods of low solar activity. This means Earth can make auroras without solar storms.
The sun is currently experiencing periods of quiet as young Solar Cycle 25 sputters to life. Pea soup, anyone? [Note: Solar Cycle 25 is accelerating. MS}
End Notes:
(1) Why do these electron beams exist? Earth’s magnetosphere is buzzing with energetic particles. Many of them are captured from the solar wind. When these particles strike the top of Earth’s atmosphere (the ionosphere), they dislodge electrons. Electric fields, which form naturally in Earth’s spinning magnetosphere, grab the liberated electrons and accelerate them skyward in collimated beams.
(2) Why don’t the beams ever go away? Short answer: because the solar wind never stops blowing. Even when the sun is quiet, Earth’s magnetosphere is jostled and energized by the ever-present solar wind. As a result, electrons are always being knocked off the top of Earth’s atmosphere as described in Note #1. Although solar storms are not required for this process, solar storms can help. For instance, when a CME strikes Earth’s magnetosphere, the contents of the magnetosphere become extra-energized. Lots of particles furiously strike the top of Earth’s atmosphere, liberating even more electrons than usual. Earth’s electron beams can thus become super-charged. When the storm subsides, the electron beams may weaken, but they never vanish because even the quiet sun produces solar wind.
References:
Zhang, X., Angelopoulos, V., Artemyev, A. V., Zhang, X.-J. (2021), Beam-driven ECH waves: A parametric study, Phys. Plasmas, 28, 072902, https://doi.org/10.1063/5.0053187
Zhang, X., Angelopoulos, V., Artemyev, A. V., Zhang, X.‐J., Liu, J. (2021). Beam‐driven electron cyclotron harmonic waves in Earth’s magnetotail. Journal of Geophysical Research: Space Physics, 126, e2020JA028743. https://doi.org/10.1029/2020JA028743s
https://spaceweatherarchive.com/2021/09/20/earth-can-makes-its-own-auroras/